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Delta lenses are an established mathematical framework for modelling and
designing bidirectional model transformations (Bx). To adapt it for machine
learning (ML) problems (following the recent observations by Fong et al), the
paper introduces a new ingredient of the lens framework — parameteriza-
tion and learning, de�nes the notion of an asymmetric learning delta lens
with amendment (ala-lens), and shows how ala-lenses can be organized into
a symmetric monoidal category. On the Bx side, ala-lenses describe bidirec-
tional model transformations, in which change propagation can also change the
transformation de�nition. The paper discusses several possibilities of a fruitful
Bx-ML interaction, and proposes several directions for future work.

1 Introduction

In a seminal paper [9], Fong, Spivak and Tuyéras showed how to compose supervised
machine learning (ML) algorithms so that the latter form a symmetric monoidal (sm)
category LearnLearnLearn, and built an sm-functor L: ParaParaPara → LearnLearnLearn, which maps a parameterized
di�erentiable function f : P × Rm → Rn (with the parameter space P = Rk) to a learning
algorithm that improves an initially given function f(p0,_): Rm → Rn by learning from a
set of training pairs (a, b) ∈ Rm×Rn. Recently, Fong and Johnson noticed in [8] (quoting
them directly) “surprising links between two apparently disparate areas”: ML (treated
compositionally as above) and bidirectional model transformations or BX (also treated
compositionally in a framework of mathematical structures called lenses [10]), whereas
“naively at least, there seemed to be little reason to expect them to be closely related
mathematically”.1 Fong and Johnson also built an sm-functor LearnLearnLearn→ sLenssLenssLens which maps
learning algorithms to so called symmetric lenses.

1 Term BX abbreviates “bidirectional X (something)” and refers to bidirectional change propagation in different
contexts in different domains: file synchronization in versioning, data exchange in databases, model synchronization
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The goal of the present paper is to introduce a framework in which similarities be-
tween ML and BX become apparent. We will see that by abstracting away some details
(and ignoring the contextual di�erences), both problems can be seen as two di�erent
instantiations of the same algebraic structure de�ned in the paper and called asymmet-
ric learning lens, al-lens. Indeed, lenses are devices specifying change propagation, and
learning can be seen as a special change propagation case. For example, given (i) sets
A,B, P and a family of functions f = (p ∈ P | fp: A→ B) as the learning space, and (ii) a
training datum (a, b′) with b′ 6= b = fp(a) for an initially given parameter value p, we can
interpret it as a change from a consistent state of the system (a, p, b) to an inconsistent
state (a, p, b′) caused by the change b b′. BX would �x this inconsistency by changing the
input data a a′ so that the state (a′, p, b′) is consistent, i.e., fp(a′) = b′, and term this action
as propagating change b b′ to change a a′. ML would call the change b b′ an error, and
�x it by changing the parameter value p p′ so that the state (a, p′, b′) is either consistent,
or at least less inconsistent than (a, p, b′) w.r.t. some metrics, e.g., we can add metrics to
set B and require that ||fp′(a), b′|| < ||fp(a), b′||. In ML terms, the system has learnt a better
approximation fp′ of the function; in BX terms, change b b′ is propagated to p p′.
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Abstract learners de�ned in [9] do both propagations
so that the updated/learnt state is (a′, p′, b′). The story
is schematically described in the inset �gure, in which
the horizontal dashed arrow shows ML’s evolution to-
wards having back propagation (Bp) and the vertical arrow
shows BX’s evolution towards BX with learning (BXL, still
to be developed; the work on deriving model transforma-
tions from examples [11] can be seen as BXL). In the lens framework developed for BX,
point (1,1) corresponds to the notion of a learning lens, which covers both ML and BX. In
the paper, we will work with asymmetric rather than symmetric lenses, which is a) tech-
nically much simpler and b) conceptually justi�ed: compositional ML considered in [9] is
about composing functions rather than relations, and an asymmetric model seems to be
more appropriate. The main result of [8] can then be seen as an “internal lens business”:
it says that any codiscrete al-lens can be encoded by a special symmetric non-learning
lens.
Thus, the notion of a learning lens was actually discovered in [9]. The present paper

makes two further contributions to the learning lens idea. The �rst could be called cate-

and model transformation in Model-Driven software Engineering (MDE), see [2] for some of these contexts. What
makes BX a special and united community amongst many circles studying synchronization and change propagation, is a
foundational lens-based algebraic framework. But within BX , the application context can vary, sometimes significantly.
In the present paper, BX will mainly refer to BX in the MDE context — the author’s area of expertize in BX .
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gori�cation: we will de�ne and work with learning delta lenses, in which a change/delta
between objects x, y is an arrow u: x → y rather than a pair (x, y); moreover, multiple
di�erent updates/deltas are possible between the same objects x, y so that Hom(x, y) is a
set (non-empty for a typical BX application in MDE). Each species of a delta lens has its
codiscrete version, in which Hom(x, y) = {(x, y)}, and learners de�ned in [9] are exactly
codiscrete al-lenses (moreover, category LearnLearnLearn is a full subcategory of the category of
asymmetric delta learning lenses alLensalLensalLens). In this paper, a lens will always mean a delta
lens by default.
In the MDE context, objects x, y are complex structures so that their delta/update u: x→

y is a complex structure too. Its ignorance in the codiscrete lens formalism may create
fundamental problems for applying codiscrete lenses to practical problems (see [6]). The
role of deltas in the ML context, where objects x, y are tuples of real numbers, is less clear
— we will discuss it in Sect. 2.2.
The second technical contribution of the paper is speci�cation of algebraic laws for

learning lenses and studying their preservation under lens composition (sequential and
parallel). For BX, this is a crucial aspect: it says that if several synchronization mod-
ules satisfy some laws (are well-behaved in the lens parlance), then their composition is
automatically well-behaved and hence the (usually expensive) integration testing is not
needed. However, a major asymmetric BX lens law that requires consistency of the system
after change propagation (called the PutGet law in the lens parlance) does not always hold
in practice and needs to be relaxed [4]. The relaxed PutGet is based on the idea of self-
propagation: the change b b′ is amended by change b′ b′@ so that the state (a′, p′, b′@) is
(more) consistent (than (a′, p′, b′)). Thus, BX needs lenses with amendment, and the main
construct of the paper is the notion of an asymmetric learning lens with amendment, ala-
lens, for which we will formulate three basic laws. We will de�ne sequential and parallel
composition of ala-lenses, study their compatibility with the three laws, and build an
sm-category of ala-lenses, alaLensalaLensalaLens. The role of algebraic laws in the ML context is an
intriguing subject left for future work.
Our plan for the paper is as follows. The next section is motivational (why delta lenses

can be useful in ML) and semi-formal; all formal results are presented in Sect. 3 and 4,
and in Sect. 5 we discuss future work. In more detail, Sect. 2.1 is a short primer on delta
lenses with amendments, and in Sect. 2.2 we discuss possible roles of metric and even
non-metric deltas in ML. Section 3 de�nes ala-lenses and several algebraic laws for them
motivated by the MDE context. Section 4 de�nes sequential and parallel composition of
ala-lenses and proves twomain results: a) preservation of lens laws by lens compositions,
and b) the possibility to organize ala-lenses into an sm-category (proofs are placed into
the Appendix).
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Several remarks about the notation used in the paper. Many formulas specify terms
built from operations going in the opposite directions (this is in the nature of the lens
formalism). To ease reading formulas,minimize the number of brackets, and relate a
formula to its supporting diagram, we denote the application of function f to argument x
by either f(x), f.x or x.f , and sometimes we will even use di�erent ways within the same
formula. For example, if operation get maps from the left to the right, operation put maps
in the opposite direction, and x is an argument in the domain of get, we tend to write
formula x′ = put(get(x)) as x′ = put(x.get) while if y is an argument in the domain of put, we
tend to write the formula y′ = get(put(y)) as (put.y).get = y′ or get(put.y) = y′. Unfortunately,
this discipline was recognized too late in the process of writing, and thus is not always
followed so that some notational mix remained.
Given a category C, its collection of objects is denoted by |C|. An arrow with domain

A ∈ |C| is denoted by u: A → _ and similarly u: _ → B is an arrow with codomain B. A
subcategory B ⊂ C is called wide if it has the same objects.
Colours in diagrams help to restore the scope of groups of operations, and partially

their order (work�ow), various sub- and super-scripts aim at helping this too.2 Yet an-
other means to facilitate understanding the work�ow underlying a complex diagram is
to use animation (unfortunately, only applicable for presentations): the present author’s
experience in presenting complex diagrammatic terms (typical for categorical reasoning)
for non-categorical audiences shows that animation can be quite useful, hence the use of
Powerpoint for complex diagrams in the paper.

2 From BX to ML

Learners de�ned in [9] are codiscrete learning lenses, and in this section we semi-
formally discuss enriching them with deltas: metrical deltas in Sect. Sect. 2.2.1 (based on
the notion of Lawvere’s metric space) and non-metrical deltas in Sect. Sect. 2.2.2 – the
latter may perhaps be an essential extension of the standard ML. In short Sect. Sect. 2.2.3,
we discuss amendments.

2.1 Background: BX world of model spaces and delta lenses

In the (delta-based) BX, the counterpart of values in Euclidean spaces dealt with in ML
are complex artifacts called models. They can be seen as models of logical theories (of the
�rst- or even higher-order) called metamodels. A typical way of specifying metamodels is
to use graphs and constraints; in fact, metamodels can be seen as Makkai’s generalized

2This resulted in perhaps excessive indexing but, again, it was understood too lately in the process of writing.
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sketches [12], see also [5] for de�nitions and discussion in the MDE context. For our
current discussion, it’s enough to think about models as graphs with some (unspeci�ed)
extra structure, which is good enough to ensure the required categorical properties (the
reader can think about attributed typed graphs as de�ned in [7]); we will call them ’graphs’.
In MDE applications, it normally does not make sense to distinguish isomorphic ’graphs’
(indeed, objects identi�ers are invisible) and thus we identify models with isomorphisms
classes of ’graphs’ and assume categories of models to be skeletal.
Let G be a category of ’graphs’/models, G,G′ ∈ |G| are two objects, and ũ: G  G′ is

some informal notion of a model update (delta, change). We can formalize it by a span
of monics u = (G �i

O
i′- G′) whose head O speci�es what part of G is preserved

in G′ so that the elements of G beyond the image i(O) are deleted, and the elements of
G′ beyond i′(O) are added during the update. We assume that G has pullbacks so that
spans are composable (and produce spans of monics), and we obtain a skeletal category
Spanmon(G),whose arrows are called updates or deltas. The delta lens framework abstracts
away these details and simply identi�es model spaces with skeletal categories and forward
transformations between model spaces with functors; the latter are usually called get
functors or just gets (read “ get the view”) — a detailed discussion and examples can be
found in [6].3

A
getp
p ∈ P

- B

�� ��A •
1:getp - B

3:put
↙↙↓↓↘↘

�� ��B′

v(2)
?

A′

u(3′)

?
•

3′:getp′
- B′@

v@(3′)
?

(Rm, E)
I(p,−)
p ∈ Rk

- (Rn, E)

�� ��a • I(p,−) - I(p, a)
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↙↙↓↓
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EI(p, a, b) ?

a′ =
rI(p, a, b)

E(a, a′)

?

•
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- I(p′, a′)
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Figure 1: Change propagation in ala-lenses. Derived/computed elements
are specially visualized: nodes are not framed, arrows are dashed.

Now we schematically
discuss how ala-lenses work
and relate them to the
ML setting in [9].While an
ordinary asymmetric lens
“inverts” a given functor
get: A → B between model
spaces, an ala-lens “in-
verts” and “learns” over a
family of get functors as
speci�ed in the top row
of diagram Fig. 1(a). This
row speci�es “types” of
the story, while the story
itself is unravelled on the level of their instances shown by the rectangular diagram below.
Suppose a given model A ∈ A and its view, model A.getp = B ∈ B, so that the state

(A, p,B) is consistent. Note our notation for the fact A.getp = B: bulleted arrows x • - y

don’t have an internal structure and just visualize pairs (x, y) — the UML calls them

3Not all useful transformations are functors, but many are, and it is a standard assumption in the delta lens framework.
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links. The label over the link (A,B) in Fig. 1(a) says that the link named 1 is an instance
of executing the function getp at object A.4 Now suppose that B is updated to B′ with
delta v(2) ∈ B(B,B′) as shown. We use numeric indexes for elements of the diagram to
additionally convey the order of operations producing them, e.g., 1 means that production
of link 1 by operation getp is the �rst step of the story, and update v(2) is the second step.
There is no intention to make this notation fully consistent (the more so formal); it is
a syntactic sugar with some semantic connotations useful for reading complex diagrams
further in the paper. In the asymmetric lens setting, any change of view B destroys
consistency (it’s not so for the symmetric version of lenses), and an ala-lens restores it by
calling an operation put (step 3) which a) changes the parameter from p to p′, b) changes the
source model A with update u(3′), and c) amends the update-violator v with an amendment
update v@ so that the result of these changes is a consistent system A′.getp′ = B@ as shown
in the diagram. Thus, put is a triple of operations (putupd, putreq, putself), which for a given
pair (A, v) returns a corresponding triple of updates e = putupd(A, v): p → p′ (not shown in
the diagram), u = putreq(A, v): A → A′, v@ = putself(A, v): B′ → B′@; the superscripts upd, req
abbreviate the corresponding names used in [9]. Moreover, we require a much stronger
consistency condition to hold—the equality u.getp′ = v; v@ between updates—because it
is update/delta v; v@ which gives model B′@ its real meaning in a typical MDE scenario.
In the lens parlance, the last equation and its versions are called the Putget law: if we
substitute put(v) for u, we obtain equality (put.v).getp′ = v; v@ to hold for any v, hence, the
name of the law.
Diagram Fig. 1(b) describes the signature of an ML-learner as de�ned in [9], where

Euclidean spaces are turned into (enriched) categories (Lawvere metric spaces) by using
some metric/error functions E—in the next section, we will discuss this in more detail.
The notation in diagram Fig. 1(b) is borrowed from [9] to ease seeing the parallelism (but
note a discrepancy: B′ in Fig. 1(a) corresponds to b without prime in Fig. 1(b)).

2.2 Enriching ML with deltas

2.2.1 Metric deltas

The main result of [9] states the existence of an sm-functor Lε,err: ParaParaPara → LearnLearnLearn, where
ParaParaPara is the category whose objects are Euclidean spaces Rn, n ∈ N, and arrows are di�eren-
tiable parameterized functions between them, i.e., (equivalence classes of) di�erentiable

4In a fuller version of the story with the type side explicitly given by a category Def of metamodels and transformation
definitions, over which a category of models is fibred, link 1 would be the Cartesian lifting of transformation definition
getp :M←N at object A living in fibre A over metamodelM, and arriving at B in the fibre B over N . Although the
syntactical side is important for applications, lenses traditionally ignore it and we follow this style in the paper.
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functions f : P × Rm → Rn with the parameter space P = Rk. Functor Lε,err is determined
by two parameters: a step size 0 < ε ∈ R and an error function err(x, y): R×R → R such that
∂err
∂x (x0,_): R → R is invertible for any given x0∈R. In BX terms, ε and err determine a
propagation policy necessary to determine the put operations in the lens Lε,err(f). Impor-
tantly, while err is needed for all put operations as it determines the cost function, i.e., the
total error function EI(p, a, b) =

∑
i≤n err(Ii(p, a), bi) to be minimized by changes in (p, a, b),

the step size ε is only needed for computing the change of p while changing a is based
on a prede�ned idea of invertibility (see [9, Sect.III] for details). In this light, a more
suggestive notation for L would be Lerr,ε,inv.
The delta lens framework, gives us a somewhat di�erent interpretation. Given an

error function err: R×R→ R, an n-dimensional Euclidean space Rn can be converted into a
metric space by de�ning the total error Err: Rn ×Rn → R by Err(x, x′) =

∑
i≤n err(xi, x′i). This

also makes space Rn a category enriched over Lawvere’s monoidal poset ([0,∞],≥,+, 0)
(Lawvere’s metric space) Rn

err, and get-view functors fp: Rm
err → Rn

err are exactly non-
expanding (i.e., distance non-increasing) functions. It gives us a category ParaParaParaerr, which
is widely embedded into ParaParaPara but has fewer arrows: only non-expanding functions from
ParaParaPara occur into ParaParaParaerr. Now the learning functors Lerr,ε,inv: ParaParaPara → LearnLearnLearn are reshaped as
functors Lε,inv: ParaParaParaerr → LearnLearnLearn.
The invertibility condition for err is essential for the above formulation as it ensures

de�nability of putreq via the policy inv. In a more general setting, function err can be
not invertible at some points, e.g., cross entropy distance is such (see [9, Sect.VIIA]).
If this more general err is “good enough”, we can still de�ne putreq by using a trickier
propagation policy pol(err) but, importantly, it must be compositional and give rise to
an sm-functor Lε,pol(err): ParaParaParaerr → alLensalLensalLens([0,∞]), where alLensalLensalLens([0,∞]) denotes the category
of [0,∞]-enriched al-lenses, i.e., lenses de�ned for model spaces and get-functors being
categories and functors enriched over [0,∞] rather than SetSetSet (and hence being metric spaces
and non-expanding maps). Actually, the existence of a compositional policy pol(err) can
serve as a formal de�nition of being “good enough”.

ParaParaParaerr-
wide - ParaParaPara

alLensalLensalLens([0,∞])

Lε,pol(err)
? 1- alLensalLensalLens(1)

=LearnLearnLearn

Lε,err?

The discussion above is summarized by the com-
mutative diagram on the right, in which the fol-
lowing constructs are used. We �rst note that a
codiscrete al-lens, i.e., a learner, can be seen as an
al-lens de�ned for categories and functors enriched
over a singleton category 1 = {∗}, which is also a monoidal poset in a trivial way. Then,
the canonic morphisms 1 : [0,∞] → 1 of monoidal posets gives rise to the change of base
functor 1 : CatCatCat([0,∞])→ CatCatCat(1) between enriched categories and functors and, similarly, to
a functor 1 : alLensalLensalLens([0,∞])→ alLensalLensalLens(1)(= LearnLearnLearn). That is, we assume that we have a general
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de�nition of an al-lens, whose ingredients are categories and functors and operations
enriched over an sm-category V (this de�nition is still to be developed — see remarks
in Future work section 5), and thus we have a category of such lenses alLensalLensalLens(V). If V is
not mentioned, it is assumed to be SetSetSet (and alLensalLensalLens will be de�ned and shown to be sm in
Sect.3-4). Note that CatCatCat(1) ∼= SetSetSet and alLensalLensalLens(1) ∼= alLensalLensalLens0 with 0 meaning codiscreteness.
.

2.2.2 Non-metric deltas

In this section, we consider (somewhat speculatively) possibilities of non-metrical deltas
between values in Euclidean spaces. The parameter space P is determined by the learn-
ing object — a neural network N , and the gradient descent algorithm (Gd) optimizes the
parameter value p ∈ Rk = |P| built from biases of neurons in internal layers and weights
of connections to and from them; the number k is determined by the network con�gura-
tion and remains constant. Suppose, however, that on the learning path determined by
Gd and back propagation (Bp), some internal layer neuron X always �res; then it makes
sense to remove it from the internal layer but add an input neuron constantly producing
the corresponding input data. Then numbers k and m (the number of input variables)
change. Or, an intelligent learning algorithm can detect that learning improvement goes
slowly due to the data from the same input neuron Y so that removal of Y and its con-
nections signi�cantly decreases the total error (e.g., think of a broken pixel in an image
recognition scenario). This removal will changem and k (which depends on the number of
connections). In general, we can assume intelligent learning algorithms that restructure
the network N and change the number of variables in the input Rm, parameter Rk, and
output Rn, spaces. To make intelligent decisions related to restructuring of the network,
the learning algorithm should have a richer notion of deltas at the input and at the output.
Below is a sketch of what such deltas could be as suggested by delta lenses.
Consider a model space to be RX with X a �nite set of variables {x1...xnX

} (with nX

the cardinality of X). An object of the space is a valuation a: X → R. An updated object
is a valuation a′: X ′ → R where X ′ = {x′1...x′nX

′} is an updated set of variables, which,
in general, somehow overlaps with X. The overlap is speci�ed by a span of inclusions
X �

ιu
Ou

ι′u- X ′, where index u refers to the update/delta arrow u: a → a′. A delta
thus consists of three parts: set of deleted variables X \ ιu(Ou), set of inserted variables
X ′ \ ι′u(Ou), and an error Eu =

∑
x∈Ou

||a(ι.x), a′(x.ι′)||.
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2.2.3 ML with amendments

Backward propagation to the input neuron layer does not make sense as input data are
given, but backward propagation to an internal layer turned out a fruitful idea. Dually,
it does not make sense to consider amendment to the output layer as output data are
also given, but amendments to an internal layer may turn out useful. In fact, backward
propagation and amendments can be seen as two versions of basically the same idea: an
intelligent optimization should be given the possibility to change the internal layer data
irrespective to whether this layer is the input or the output of the training cell (= delta
lens square as shown in Fig. 1(a).

3 Asymmetric Learning Lenses with Amendment (ALA-Lenses)

De�nition 1 (Model spaces) Amodel space is a small skeletal category whose objects and ar-
rows are called, resp.,models and deltas (or updates).

De�nition 2 (ala-lenses) Let S and T be model spaces. An ala-lens from S (the source of the
lens) toT (the target) is given by the following three components a-c.

a) Parameters: A category P of parameters (think about function/view de�nitions parameter-
ized by objects ofP). We denote objects ofP by small letters p, p′, .. rather than capital ones to avoid
confusion with [9], in which capital P is used for the entire parameter set.

b) Gets: A functor get: P → [S,T], where [S,T] is the category of functors from S to T and their
natural transformations. We will write get(p,_) or getp or (or even shorter p∗) for the functor
get(p): S → T (read “get T-views of S”). Given a parameter delta e: p → p′ and a source model
S ∈ |S|, the model delta get(e): getp(S) → getp′(S) will be denoted in formulas by e.getS (rather
than gete(S)) to smoothly use the dot notation for substitution; in diagrams, we write eS .

c) Puts: A family of operations putp,S indexed by pairs (p ∈ |P|, S ∈ |S|). Each operation in the
family takes adelta v: getp(S)→ T ′ as its input, andoutputs threedeltas

(
putx

p,S(v) | x ∈ {req, upd, self}
)

speci�ed below (names req and upd are chosen to match the terminology in [9]).

c1) u = putreq
p,S(v): S → S′ is a source update (read “put the view update v back”)

c2) e = putupd
p,S(v): p→ p′ is a parameter update or transformation evolution.

c3) v@ = putself
p,S(v): T ′ → T@ is an amendment to the original update,

A lens is called codiscrete if categories S,T, P are codiscrete.
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p 
e  =  putupd (v)

P

p’

getp

getp’

1: p Tp

3’: p’

v

T’

eS

3’: p’ 

u  =  putreq(v)

S’

S

T @

T ’p 

3: p 

Tp’ 

eS’
vp’

vp

v@= putself(v)

1: getp
e . getS

Figure 2: Arity schema of apa-lens operations and its
derivatives:

Diagram in Fig. 2 shows how these
operations are interrelated. The upper
part shows an arrow e: p→ p′ in category
P and two corresponding functors from
S to T. The lower part is to be seen as a
3D-prism with visible front STp′T@S′ and
upper STpTp′ faces, the bottom and back
side faces are invisible and the corre-
sponding arrows are dashed. The prism
denotes an algebraic term (work�ow):
given elements are shown with black
�ll and white font, while derived ele-
ments are blue (recalls being mechani-
cally computed) and blank (double-body
arrows are considered to be blank). The
two pairs of arrows originating from S

and S′ are not blank because they denote
pairs of nodes (the UML says links) rather
than mappings/deltas between nodes —we explained this notation in the previous sec-
tion (where derived arrows were dashed but now we use dashing for 3D-drawing). As in
diagram Fig. 1(a), we again use numeric names for links to convey the order of opera-
tions, but now we write i:p rather than i:getp to ease reading (below we will see diagrams
that have more such arrows). By the same reason, we omit numeric scripts near vertical
and diagonal arrows (deltas), and label the deltas realizing natural transformations very
brie�y, e.g., eS for the full name get(e, S)– the latter will also be written in formulas as
getS(e) or e.getS. Two callouts near 1:p and ES recall these notational tricks.
The label of invoking operation put in the third step of the scenario is omitted, but

instead, the equational de�nitions of deltas e, u, v@ are written (note the three callouts
near them). The diagram also shows four derived deltas forming the right back face of the
prism: vp = getp(u), vp′ = getp′(u), and two matching them deltas eS = getS(e), eS′ = getS′(e),
which together form a commutative square due to naturality of get(e) (note the common
target of eS′ and vp′, i.e., S′.getp′, shown as a rounded square). Finally, the diagram also
shows coincidence of this “square” object and the target T@ of the amendment v@ (the
inner circle), which is a special requirement (a constraint) that does not hold automatically
and to be specially postulated (the red �ller in-between the square and the circle refers to
this constraint). Thus, the arity schema of put operations includes the following Putget0

equations:
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(Putget)0 cod(v.putself
p,S) = cod(v.putreq

p,S .getp′) = cod(v.putupd
p,S .getS′)

where the left equality is a constraint (red) while the right one is automatic (blue). The
“co-discreteness” index 0 recalls that the constraint equates objects (nodes) rather than
arrows. Equating arrows is the subject of a special Putget law stated below together with
two other requirements to ala-lenses, which would allow MDE practitioners to call them
“well-behaved”.

De�nition 3 (Well-behavedness) An ala-lens is calledwell-behaved (wb) if it satis�es the
following three laws speci�ed by equations to hold for all p ∈ |P|, S ∈ |S| and v: Tp → T ′

where Tp denotes getp(S):

(Stability) if v = idTp then all three propagated updates e, u, v@ are identities:
putupd

p,S(idTp
) = idp, putreq

p,S(idTp
) = idS , putself

p,S(idTp
) = idTp

(Putget) getS(putupd
p,S .v) = idTp

and getp′(putreq
p,S .v) = v; v@, where v@ denotes putself

p,S(v)

(Hippocr) if getp(u) = v for some u: S → S′, then v@ = idT ′

A lens is stable if it satis�es Stability, and an SPg-lens if it satis�es Stability and Putget.
A lens is called Hippocratic if the (Hippocr) law holds.5

Remark 1 a) Stability says that the lens does nothing if nothing happens on the target
side (no trigger–no action, hence, the name of the law)
b) Putget requires the goal of update propagation to be achieved after the propagation

act is �nished. It may seem a notational trick rather than a law as operation putreq
p,S provides

delta u, and functor getp′ sends it to a delta getp′(u) targeting at some model T@ anyway.
However, in general, there are many possible deltas between models T ′ and T@, whereas
the Putget law states the existence of some special delta v@: T → T@ such that equations
(Putget) hold. Note also that Putget implies commutativity of the lower triangle in the
right back face as the upper one is commutative by Putget.
c) Hippocraticness prohibits amending delta v if consistency can be achieved for v with-

out amendment (hence, the name). Note that neither equality putupd
p,S(v) = p nor putreq

p,S(v) = u

are required: the lens can improve consistency by changing p and u but changing v is dis-
allowed.

Example 1 (Identity lenses) Any skeletal category A gives rise to an ala-lens id A with the fol-
lowing components. The source and target spaces are equal toA, and the parameter space is 1 (a

5The term Hippocratic and its derivatives were coined for Bx by Perdita Stevens [13] to refer to a family of re-
quirements sharing a common intention of doing nothing if consistency is not violated, which can be seen as an appli-
cation of a major medical principle “First, do no harm” usually attributed to the Hippocratic oath — see Wikipedia
https://en.wikipedia.org/wiki/Hippocratic_Oath for details.
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Figure 3: Sequential composition of apa-lenses

category with a single object * and a single arrow id∗). Functor get∗ is the identity functor and all
puts are identities. Obviously, this lens is wb.

Example 2 (Iso-lenses) Let ι: A → B be an isomorphism between model spaces. It gives rise to
a wb ala-lens `(ι): A → B with P`(ι) = 1 as follows. Given any A inA and v: ι(A) → B′ in B, we
de�ne put`(ι).req

∗,A (v) = ι−1(v) and the two other put operations send v to identities.

Example 3 (Bx lenses) Examples of SPg and wb aa-lenses modelling a Bx can be found in [4]:
they all can be considered as ala-lenses with a trivial parameter space 1.

4 Sequential andparallel compositionof ala-lenses, andsymmetricmonoidal

category alaLensalaLensalaLens

Construction 1 (Sequential composition of ala-lenses) Let k : A→ B and `: B→ C be two
ala-lenses with parameterized functors getk : P → [A,B] and get`: Q → [B,C] resp. Their
composition is the following ala-lens k ; `.
Its parameter space is the product P×Q, and the get-family is de�ned as follows. For

any pair of parameters (p, q) (we will write pq), getk ;`
pq = getk

p; get`q: A → C. Given a pair of
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parameter deltas, e: p → p′ in P and h: q → q′ in Q, their getk ;`-image is the Godement
product of natural transformations, getk ;`(eh) = getk (e) ∗ get`(h).
Now we de�ne k ; `’s propagation operations puts. Let (A, pq, Cpq) with A ∈ |A|, pq ∈

|P×Q|, A.getk
p.get`q = Cpq ∈ |C| be a state of lens k ; `, and w: Cpq → C ′ is a target update as

shown in Fig. 3. For the �rst propagation step, we run lens ` as shown in Fig. 3 with the
blue colour for derived elements: this is just an instantiation of the pattern of Fig. 2 with
the source object being Bp = getp(A) and parameter q. The results are deltas

(1) h = put`.upd
q,B (w): q → q′, v = put`.req

q,B (w): Bp → B′, w@ = put`self
q,B (w): C ′ → C@.

Next we run lens k at state (p,A) and the target update v produced by lens `; it is yet
another instantiation of pattern in Fig. 2 (this time with the green colour for derived
elements), which produces three deltas

(2) e = putk .upd
p,A (v): p→ p′, u = putk .req

p,A (v): A→ A′, v@ = putk self
p,A (v): B′ → B@.

These data specify the green prism adjoint to the blue prism: the edge v of the latter is
half of the right back face diagonal BpB@ of the former. In order to make an instance of
the pattern in Fig. 2 for lens k ; `, we need to complete the blue-green diagram by �lling-
in the empty spaces below the diagonal and above the diagonal with appropriate arrows.
These �lling-in arrows are provided by functors get` and getk and shown in orange (where
we have chosen one of the two equivalent ways of forming the Godement product – note
two curve brown arrows). In this way we obtain yet another instantiation of the pattern
in Fig. 2 denoted by k ; `:

(3) put(k ;`)upd
A,pq (w) = (e, h), put(k ;`)req

A,pq (w) = u, put(k ;`)self
A,pq (w) = w(k ;`).@

where w(k ;`).@ = w@; v@
q , and v@

q′ denotes v@.getq′. Thus, we built an ala-lens k ; `, which
satis�es equation Putget0 by construction.

The following result is important for practical applications: it ensures that a composed
synchronizer satis�es its requirements automatically as soon as its components do, which
allows signi�cant reducing of the integration testing (only connectivity is to be checked).

De�nition 4 (Get and Put images of a lens) Given a lens from space S to spaceT, de�ne

Get(S) =
{
u.getp : u ∈ ArrS, p ∈ |P|

}
⊂ ArrT

Put(T) =
{

putp,S .v : p ∈ |P|, S ∈ |S|, v: getp(S)→ _ ∈ ArrT
}
⊂ ArrS

Two consecutive lenses k : A→ B, `: B→ C are calledwell-matched if Getk (A) ⊃ Put`(C).
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Theorem 1 (Seq. composition and lens laws) Given are ala-lenses k : A→ B, `: B→ C, and
lens k ; `: A→ C is their seq. composition as de�ned above in Constr. 1. Then the following holds.
(a) Lens k ; ` is SPg as soon as lenses k and ` are such.
(b) If lenses k and ` are wb and additionally well-matched then lens k ; ` is wb too.

A proof can be found in Appendix A

Construction 2 (Parallel composition of ala-lenses) Let `i: Ai → Bi, i = 1, 2 be two ala-
lenses with parameter spaces Pi. The lens `1||`2: A1×A2 → B1×B2 is de�ned as follows.
(We will denote a pair of element (x, y) by x||y.) Parameter space `1||`2.P = P1 × P2. For
any p1||p2 ∈ P1×P2, de�ne get`1||`2

p1||p2
= get`1

p1
× get`2

p2
. Further, for any S1||S2 ∈ A1×A2 and delta

v1||v2: get`1||`2
p1||p2

(S1||S2)→ T ′1||T ′2, we de�ne componentwise

e = put(`1||`2)upd
p1||p2,S1||S2

(v1||v2): p1||p2 → p′1||p′2 by setting e = e1||e2 where ei = put`i

pi,Si
(vi), i = 1, 2

and similarly for put(`1||`2)req
p1||p2,S1||S2

and put(`1||`2)self
p1||p2,S1||S2

The following result is obvious but important (as any compositionality result– see the
remark about integration testing above).

Theorem 2 (Parallel composition and lens laws) Lens `1||`2 is wb as soon as lenses `1 and `2

are such.

Now our goal is to organize ala-lenses into an sm-category. To make seq. composi-
tion of ala-lenses associative, we need to consider them up to some equivalence (indeed,
Cartesian product is not strictly associative).

De�nition 5 (Ala-lens Equivalence) Two parallel ala-lenses `, ˆ̀: S→ T are called equivalent
if their parameter spaces are isomorphic via a functor ι: P → P̂ such that for any S ∈ |S|, p ∈ P
and v: (S.getp)→ T ′ the following holds:

S.getp = S.ĝetι(p), ι(putupd
p,S(v)) = p̂utι(p),S(v), and putx

p,S(v) = p̂utx
S,ι(p)(v) for x∈{req, self}

Remark 2 In general, we should require isomorphisms rather than equalities above, but isos be-
come equalities for skeletal categories.

Lemma 1 Operations of lens’ sequential andparallel compositionare compatiblewith lens’ equiv-
alence. Hence, these operations are well-de�ned for equivalence classes.

Below we will identify lenses with their equivalence classes by default.

Theorem 3 (Ala-lenses form an sm-category) Operations of sequential andparallel compo-
sitionof ala-lenses de�nedaboveallowbuildingan sm-categoryalaLensalaLensalaLens, whoseobjects aremodel
spaces (= skeletal categories) and arrows are (equivalence classes) of ala-lenses.
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Proof. It is easy to check that identity lenses id A de�ned in Example 1 are the units of the
seq. lens composition de�ned above. The proof of associativity is rather involved and is
placed into Appendix B. Thus, alaLensalaLensalaLens is a category.
Next we de�ne the monoidal structure. The monoidal product of objects is Carte-

sian product of categories (skeletality is preserved), and the monoidal product of arrows
is lens’ parallel composition de�ned above. The monoidal unit is the terminal category
1. Associators, left and right unitors, and braiding are iso-lenses generated by the re-
spective isomorphism functors (Example 2). Moreover, it is easy to see that the iso-lens
construction from Example 2 is actually a functor isolensisolensisolens: CatCatCatiso → alaLensalaLensalaLens. Then as a)
CatCatCat is symmetric monoidal and ful�ls all necessary monoidal equations, and b) isolensisolensisolens

is a functor, these equations hold for the ala-lensimages of CatCatCatiso-arrows, and alaLensalaLensalaLens is
symmetric monoidal too (cf. a similar proof in [9] with (SetSetSet,×) instead of (CatCatCat,×).

5 Future work

5.1 The delta lens framework as such

Enrichment. Generalization of delta lenses for the enriched categorical setting, in which
model spaces and get-mappings are V-categories and V-functors for some sm-category
V, and put-operations are correspondingly generalized too. If everything is done right,
this would give us an sm-category alaLensalaLensalaLens(V). Three cases are especially important: V =
[0,∞] seems to be fundamental for ML (see discussion in Sect. 2.2), V = SetSetSet is developed
in the present paper, and V = CatCatCat is a long-time needed generalization of lenses for
the bicategorical setting (see, e.g., [3] for the necessity to have 2-arrows for BX and
[9, Sect.VII.C] argues for bicategories in ML). The notion of ala-lens should be functorial
w.r.t. V, i.e., be speci�able by a functor alaLensalaLensalaLens: smCatsmCatsmCat→ smCatsmCatsmCat that maps an sm-category
V to the corresponding sm-category of V-enriched ala-lenses.

Symmetric lens decomposition. Generalizing Fong and Johnson’s result [8] from the
codiscrete case to the delta lens case. It may happen that a symmetric learning lens is
decomposable into a ternary span of asymmetric lenses, whose two legs are responsible
for usual change propagation and the third leg provides learning (parameter changing).
Then the delta version of the result would be a special case, when the original symmetric
learning lens happens to be asymmetric, and hence the span should be binary.

Sequential lens composition as the Kleisli arrow composition. Find a suitable monad so
that the associativity of seq. lens composition would be the associativity of substitution in
the Kleisli category (cf. a remark on p.9 of [8]). Note also that in diagram Fig. 3, �lling-in
the orange part somewhat recalls the composition of Kleisli arrows.
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5.2 Applications.

Applications to BX. a) Explore applicability of the learning lens framework for model
transformation by example work (see [11] for references). b) Check functoriality of com-
mon change propagation policies used in TGG-based BX, e.g., those in [1].

Applications to ML. a) Explore applicability of deltas (see Sect. 2.2) in the practical ML
setting. b) Explore applicability of lens laws in the practical ML setting.
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A Sequential composition of ala-lenses and lens laws: Proof of Theorem 1 on

page 14

Proof. a) Stability of k ; ` is obvious. To prove Putget for k ; `, we �rst note that as eA is the
identity due to Putget for k , then its image is also the identity (functoriality of getq′) and
hence (e ∗ h)A is the identity as hB is the identity due to Putget for `. It remains to prove
u.getk ;`

p′q′ = w;w(k ;`).@ We compute:

u.getk ;`
p′q′ = u.getk

p′ .get`q′ by constr.(4)

= (v; v@).get`q′ Putget for k

= (v.get`q′) ; (v2.get`q′) functoriality

= (w;w@) ; v@
q′ Putget for ` | def. of v@

q′

= w; (w@; v@
q′) associativity of ;

= w;w(k ;`).@

Proof of (b). For any given A, p, q in the respective spaces, and delta w: A.getk ;`
pq → C ′ such

that u.getk ;`
pq = w for some u: A→ _, we need to prove w(k ;`).@ = theidentityC′. We have seen
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that
w(k ;`).@ = w`.@ ; get`q′(vk .@) where v = put`.req

Bp,q
.

We will prove that both components of ; are identities. The �rst one is identity due to
w = get`q(u.getk

p) and ` is Hippocratic. For the second component, vk .@ is identity as i)
v = put`.req

Bp,q
and lenses are well-matched and ii) lens k is Hippocratic. Now the second

component is identity as functor get`q′ preserves identities.

B Proof: the sequential ala-lens composition is associative

Let k : A → B, `: B → C, µ: C → D be three consecutive lenses with parameter spaces P,
Q, R resp. We will denote their components by an upper script, e.g., getk

p or put`.upd
q,B , and

lens composition by concatenation: k ` is k ; ` etc; putk `.upd
p,A denotes put(k `).upd

p,A

We need to prove (k `)µ = k (`µ). We easily have associativity for the get part of the con-
struction: (P×Q)×R ∼= P×(Q×R) (to be identi�ed for equivalence classes), and (getk

p; get`q); getµr =
getk

p; (get`q; getµr ), which means that get(k `)µ
(pq)r = getk (`µ)

p(qr) , where p, q, r are parameters (objects)
from |P|, |Q|, |R| resp., and pairing is denoted by concatenation.
Associativity of puts is more involved. Suppose that we extended the diagram in Fig. 3

with lens µ data on the right, i.e., with a triangle prism, whose right face is a square
DpqrDr′D@D′r with diagonal ω;ω@: Dpqr → D@ where r ∈ R is a parameter, Dpqr = getµr (Cpq)
and ω: Dpqr → D′ is an arbitrary delta to be propagated to P and A, and re�ected with
amendment ω@ = putµ.self

r,Cpq
(ω). Below we will omit parameter subindexes near B and C.

We begin with term substitution in equations (1-3) in Constr. 1, which gives us equa-
tional de�nitions of all put operations (we use the function application notation f.x as the
most convenient):

putk `.req
pq,A .w = (putk .req

p,A .put`.req
q,B .w): A→ A′,(5)

putk `.upd
pq,A .w = (putk .upd

p,A .put`.req
q,B .w): p→ p′ || (put`.upd

q,B .w): q → q′(6)

putk `.self
pq,A .w = (put`.self

q,B .w) ; get`q′(putk .self
p,A .put`.req

q,B .w): C ′ → C@ → C@@(7)

(note the interplay between di�erent puts in (6) and (7), and also their “duality”: (6) is
a ||-tem while (7) is a ;-term).
Now we apply these de�nitions to the lens (k `)µ and substitute. Checking put(k `)µ.req is

straightforward similarly to associativity of gets, but we will present its inference to show
how the notation works (recall that ω: Dpqr → D′ is an arbitrary delta to be propagated)

(8)

put(k `)µ.req.ω = putk `.req
pq,A .putµ.req

r,C .ω by (5)
= putk .req

p,A .(put`.req
q,B .putµ.req

r,C .ω) by (5)
= putk .req

p,A .put`µ.req
qr,B .ω by (5)

= putk ;(`µ)
p,A .ω by (5)
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Computing of put(k `);µ.upd is more involved (below a pair (x, y) will be denoted as either xy
or x||y depending on the context).
(9)

put(k `);µ.upd
(pq)r,A .ω =

(
putk `.upd

pq,A .putµ.req
r,C .ω: p||q → p′||q′

)
||
(

putµ.upd
r,C .ω: r → r′

)
by (6)

=
(

putk .upd
p,A .put`.req

q,B .putµ.req
r,C .ω || put`.upd

q,B .putµ.req
r,C ω

)
|| putµ.upd

r,C .ω by (6) || same
= putk .upd

p,A .put`.req
q,B .putµ.req

r,C .ω ||
(

put`.upd
q,B .putµ.req

r,C ω|| putµ.upd
r,C .ω

)
by assoc. of ||

= putk .upd
p,A .put`µ.req

qr,B .ω || put`µ.upd
qr,B .ω by (5) || by (6)

= putk ;(`µ).upd
p(qr),A .ω again by (6)

Associativity of put(k ;`;µ).self
pqr,A can be proved in a similar manner using associativity of ; (see

(7)) rather than associativity of || (see (6)) used above. Below w stands for putµ.req
r,C .ω

(10)
put(k `).µ.self

(pq)r,A .ω = (putµ.self
r,C .ω) ; getµr′

(
putk `.self

p,A .w
)

by (7)
= (putµ.self

r,C .ω) ; getµr′

(
(put`.self

q,B .w) ; get`q′(putk .self
p,A .put`.req

q,B .w)
)

by (7)
=

(
(putµ.self

r,C .ω) ; getµr′(put`.self
q,B .w)

)
; get`µq′r′(putk .self

p,A .put`.req
q,B .w) by funct. of getµr′ and assoc. of ;

= (put`µ.self
qr,B .ω) ; get`µq′r′(putk .self

p,A .put`µ.req
qr,B .ω) by def. of w and (8) applied twice

= putk (`µ).self
p(qr) .ω again by (7)
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